Object detection jobs can be:
For general information on the JSON structure, refer to Generic JSON template.
For information on how to use object detection in real-life labeling projects, refer to Object/entity detection jobs.
Standard object detection jobs
Object detection job template
"OBJECT_DETECTION_JOB": {
"content": {
"categories": {
"A": {
"children": [],
"color": "#472CED",
"name": "A",
"id": "category104"
},
"B": {
"children": [],
"name": "B",
"id": "category107",
"color": "#5CE7B7"
}
},
"input": "radio"
},
"instruction": "<instruction>",
"mlTask": "OBJECT_DETECTION",
"required": 1,
"tools": [
"rectangle"
],
"isChild": false,
"isNew": true
}Job-specific settings
Parameter | Value | Description |
|---|---|---|
|
| N/A |
|
| N/A |
|
| The available values for |
|
| You can set your bounding boxes to have a visible orientation marker. This way you can keep bbox orientation consistent in projects that require it. |
For information on how the object detection jobs look in the exported jsonResponse, refer to The structure of jsonResponse for exported object/entity detection and relation jobs.
Semantic segmentation jobs
In semantic segmentation, two job types have to exist:
- Object detection job
- ML-model based object detection interactive job
Semantic segmentation job template
"OBJECT_DETECTION_JOB": {
"content": {
"categories": {
"A": {
"children": [],
"color": "#472CED",
"name": "A",
"id": "category124"
},
"B": {
"children": [],
"name": "B",
"id": "category126",
"color": "#5CE7B7"
}
},
"input": "radio"
},
"instruction": "<instruction>",
"mlTask": "OBJECT_DETECTION",
"required": 1,
"tools": [
"semantic"
],
"isChild": false,
"isNew": false,
"models": {
"interactive-segmentation": {
"job": "OBJECT_DETECTION_JOB_INTERACTIVE"
}
}
},
"OBJECT_DETECTION_JOB_INTERACTIVE": {
"content": {
"categories": {
"A": {
"children": [],
"color": "#472CED",
"name": "A"
},
"B": {
"name": "B"
}
},
"input": "radio"
},
"instruction": "<instruction>",
"isChild": false,
"isModel": true,
"isVisible": false,
"mlTask": "OBJECT_DETECTION",
"required": 0,
"tools": [
"marker"
]
}Job-specific settings
OBJECT_DETECTION_JOB
| Parameter | Value | Description |
|---|---|---|
mlTask | "OBJECT_DETECTION" | N/A |
input | "radio" | N/A |
tools | ["semantic"] | N/A |
models | "interactive-segmentation": {"job": "<name of the job marker job>"} | Semantic segmentation JSON object |
OBJECT_DETECTION_JOB_INTERACTIVE
| Parameter | Value | Description |
|---|---|---|
mlTask | "OBJECT_DETECTION" | N/A |
input | "radio" | N/A |
isModel | "true" | Value that tells Kili that the job is in fact a model |
For information on how the semantic segmentation jobs look in the exported jsonResponse, refer to The structure of jsonResponse for exported object/entity detection and relation jobs.
Pose estimation jobs
Pose estimation job template
"OBJECT_DETECTION_JOB": {
"content": {
"categories": {
"A": {
"children": [],
"color": "#472CED",
"name": "A",
"id": "category117",
"points": [
{
"code": "POINT_1",
"id": "point119",
"name": "Point 1"
},
{
"code": "POINT_2",
"id": "point121",
"name": "Point 2"
}
]
},
"B": {
"children": [],
"name": "B",
"id": "category120",
"color": "#5CE7B7",
"points": [
{
"code": "POINT_3",
"id": "point122",
"name": "Point 3"
},
{
"code": "POINT_4",
"id": "point123",
"name": "Point 4"
}
]
}
},
"input": "radio"
},
"instruction": "<Job title>",
"mlTask": "OBJECT_DETECTION",
"required": 1,
"tools": [
"pose"
],
"isChild": false,
"isNew": true
}Job-specific settings
| Parameter | Value | Description |
|---|---|---|
points | Array of JSON objects | An array of pose estimation points |
mlTask | "OBJECT_DETECTION" | N/A |
input | "radio" | N/A |
tools | ["pose"] | N/A |
For information on how the pose estimation jobs look in the exported jsonResponse, refer to The structure of jsonResponse for exported object/entity detection and relation jobs.